面向光伏MPPT控制策略的改进果蝇算法
局部遮光会降低光伏发电系统的效率.在局部遮光条件下,光伏系统的输出功率特性曲线会产生多个峰值,传统的最大功率跟踪方法不具有全局搜索的能力,其在进行多峰值最大功率跟踪时会失效.果蝇算法(Fruit Fly Optimization Algo-rithm,FOA)具有全局寻优能力,但是在求解过程中存在收敛速度慢、收敛精度低及容易收敛于局部最优值的问题.文中对果蝇算法进行改进,提出结合自适应lévy飞行步长的Lévy-FOA算法,该算法充分利用Lévy飞行不均匀随机游走的特性,引入自适应步长调整因子,改进了原有算法的位置更新方式,提高了算法的收敛速度以及收敛精度,避免了算法陷入局部极值.文中利用3个标准函数对自适应Lévy-FOA算法的收敛性进行分析,并与普通FOA算法、自适应改进学习因子粒子群算法(Adap-tive Particle Swarm Optimization,APSO)进行对比.结果表明,与FOA算法和APSO算法相比,自适应Lévy-FOA算法的平均跟踪时间有较大幅度的减少,平均收敛精度提高了4个数量级.最后,将自适应Lévy-FOA算法应用于光伏最大功率跟踪中.仿真结果显示,在不同的光照条件下,自适应Lévy-FOA算法能够经过较少的迭代实现最大功率跟踪,并且在第一次迭代后就能达到最大功率的90%以上,与其他算法的跟踪效果对比,自适应Lévy-FOA算法具有较短的跟踪时间和较高的跟踪精度,实际寻优能力优越,能够提高光伏系统的输出效率.
光伏发电、Lévy飞行、果蝇算法、最大功率点跟踪、自适应
47
河南省科技攻关计划项目112102210004
2020-05-25(万方平台首次上网日期,不代表论文的发表时间)
共6页
236-241