空-频域联合投票的交通视频阴影去除方法
交通场景中的静止或运动阴影往往会降低车辆目标跟踪的精度,因此有效地去除阴影是交通监控视频处理的重要环节之一.然而,目前尚无一种能够同时发掘阴影的空间域和频率域特性且抵抗静止和运动阴影干扰的阴影去除方法.为此,提出了一种基于空-频域联合投票策略的交通视频阴影去除方法.首先,将视频帧从RGB颜色空间转换到HSV颜色空间,再进行非下采样剪切波变换;其次,假设变换系数服从高斯分布,采用变换系数的均值和标准差计算每个尺度的加权掩码;然后,根据多尺度变换系数的零树分布特性,利用粗尺度的加权掩码校正细尺度的加权掩码,将各个尺度、各个颜色通道的加权掩码进行线性组合后得到一个公共掩码,再采用基于最小二乘法拟合的最大熵方法计算自适应分割阈值,对公共掩码进行二值化;最后,联合频率域加权掩码、S通道和V通道的掩码进行投票,进而确定去除阴影后的运动车辆区域.实验结果表明,该算法可有效去除交通监控视频中的静态/运动阴影,抑制阴影的干扰,将传统Meanshift算法的输出车辆轨迹与真实轨迹间的平均欧氏距离缩小95%,且未出现目标丢失的现象,增强了智能分析算法的鲁棒性.研究结果说明,该算法有效联合交通监控视频的空间域和频率域表示,充分发掘了运动车辆区域与阴影区域之间的纹理特性和颜色特性差异,有利于获得更精确的阴影去除结果,进而提高车辆目标跟踪的精度.
交通监控视频、阴影去除、非下采样剪切波、联合投票、多尺度加权掩码
47
大连市高层次人才创新支持计划项目2015R069
2020-05-25(万方平台首次上网日期,不代表论文的发表时间)
共8页
129-136