一种基于自注意力的句子情感分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.190100097

一种基于自注意力的句子情感分类方法

引用
注意力机制近年来在多个自然语言任务中得到广泛应用,但在句子级别的情感分类任务中仍缺乏相应的研究.文中利用自注意力在学习句子中重要局部特征方面的优势,结合长短期记忆网络(Long Short-Term Model,LSTM),提出了一种基于注意力机制的神经网络模型(Attentional LSTM,AttLSTM),并将其应用于句子的情感分类.AttLSTM首先通过LSTM学习句子中词的上文信息;接着利用自注意力函数从句子中学习词的位置信息,并构造相应的位置权重向量矩阵;然后通过加权平均得到句子的最终语义表示;最后利用多层感知器进行分类和输出.实验结果表明,AttLSTM在公开的二元情感分类语料库Movie Reviews(MR),Stanford Sentiment Treebank(SSTb2)和Internet Movie Database(IMDB)上的准确率最高,分别为82.8%,88.3%和91.3%;在多元情感分类语料库SSTb5上取得50.6%的准确率.

深度学习、情感分类、自注意力、长短期记忆神经网络、自然语言处理

47

TP183(自动化基础理论)

广东省自然科学基金;广东省科技厅应用型科技研发专项资金;广东省医学科学技术研究基金项目

2020-04-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

204-210

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn