攻击标签信息的堆栈式支持向量机
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.181001921

攻击标签信息的堆栈式支持向量机

引用
真实数据集中存在的对抗样本易导致分类器取得较差的分类性能,但如果其能够被合理利用,分类器的泛化能力将得到显著提高.针对现有大部分分类器并没有涉及对抗样本信息的问题,提出一种攻击标签信息的堆栈式支持向量机.该方法从给定的初始数据集中选取一定比例的样本,并攻击所选取样本的标签,使之成为对抗样本,即将样本标签替换成其他不同类型的标签,利用支持向量机训练包含对抗样本的数据集,从而生成对抗支持向量机.计算对抗支持向量机的输出误差相对于输入样本的一阶梯度信息,并将其嵌入到输入样本特征中以更新输入样本.将更新后的样本输入到下一个对抗支持向量机中,并重新训练.以堆栈方式级联一定数目的对抗支持向量机,直至取得最好的分类性能.原理分析与实验结果表明,基于对抗样本的一阶梯度信息不仅提供了分类器输出与输入之间的一种正相关关系,而且为堆栈式支持向量机中的子分类器提供了一种新的堆栈方式,并提高了分类器的整体性能.

堆栈结构、对抗样本、标签攻击、支持向量机

47

TP391.4(计算技术、计算机技术)

国家自然科学基金;常州市科技计划项目

2020-03-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

110-116

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn