面向多尺度的属性约简加速器
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.181102031

面向多尺度的属性约简加速器

引用
邻域粗糙集,采用半径的方式度量样本之间是否相似,因而不同大小的半径自然地构成了不同尺度意义下的粗糙近似.基于邻域粗糙集的属性约简问题往往需要在多个不同半径上求解约简,其目的是找到具有较好泛化性能的属性子集,或探讨不同尺度意义下约简性能的变化趋势.但值得注意的是,利用传统的启发式算法在多个半径所对应的多尺度意义下进行约简求解时,往往需要在所有尺度上逐一重复执行这一算法,时间消耗较大,特别是尺度个数较多的情况下,时间消耗会变得更高.为解决这一问题,借助半径的变化,文中提出了面向多尺度的约简求解加速策略.这一策略在分别考虑半径从小到大和从大到小的变化趋势的情况下,同时缩小了样本和属性的遍历规模,将当前半径下约简的求解过程建立在上一个半径所求得约简的基础上,利用启发式搜索进行正向或逆向的属性增加及删除操作.为验证所提加速策略的有效性,实验选取8个UCI数据集,采用十折交叉验证的方法求取20个半径下的约简,对比不同方法求解约简的时间消耗和分类性能.实验结果表明,与利用传统的启发式算法在每一个尺度意义下单独求解约简的方法相比较,文中所提出的正向或逆向加速搜索方法可以在保持分类性能不发生显著变化的情况下,极大地降低多尺度意义下求解约简的时间消耗,并且有效地降低过拟合的程度.

属性约简、启发式搜索、多尺度、邻域粗糙集

46

TP181(自动化基础理论)

国家自然科学基金项目61572242,61502211,61503160

2020-01-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

250-256

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn