基于多层次注意力机制的远程监督关系抽取模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.180901780

基于多层次注意力机制的远程监督关系抽取模型

引用
实体关系抽取作为信息抽取的主要任务之一,其目的在于确定无结构文本中两个实体的关系类别.目前准确率较高的有监督方法由于需要大量的人工标注语料而受到了限制,而远程监督方法则通过知识库与文本集进行启发式对齐来获取大量关系三元组,这是解决大规模关系抽取任务的主要途径.针对目前远程监督关系抽取的研究未能充分利用句子上下文词语的高层语义,以及未考虑关系之间的依赖包含关系的问题,文中提出了一种基于多层次注意力机制的远程监督关系抽取模型.该模型首先通过双向GRU(Gate Recurrent Unit)神经网络对句子词向量进行编码来获取句子高维语义;其次通过引入词语层注意力来计算两个实体与上下文词语的相关程度,从而充分捕捉句子中实体上下文的语义信息;然后在多个实例上构建句子层的注意力来减少标签错误标注的问题;最后通过关系层的注意力自动学习不同关系之间的依赖包含关系.在FreeBase+NYT公共数据集上的实验结果表明,在双向GRU模型的基础上引入词语层、句子层和关系层注意力机制对提高远程监督关系抽取的效果都起到了促进作用;将三层注意力机制进行融合得到的多层次注意力机制关系抽取模型的准确率和召回率相较于现有的主流方法提高了4% 左右,更好地实现了关系抽取,从而为进一步构建知识图谱、智能问答等应用奠定了理论基础.

远程监督、关系抽取、双向GRU、词向量、注意力机制

46

TP391(计算技术、计算机技术)

国家自然科学基金61602353 ,湖北省自然科学基金2017CFB505

2019-11-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

252-257

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn