基于KL散度的策略优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2019.06.032

基于KL散度的策略优化

引用
强化学习(Reinforcement Learning,RL)在复杂的优化和控制问题中具有广泛的应用前景.针对传统的策略梯度方法在处理高维的连续动作空间环境时无法有效学习复杂策略,导致收敛速度慢甚至无法收敛的问题,提出了一种在线学习的基于KL散度的策略优化算法(KL-divergence-based Policy Optimization,KLPO).在Actor-Critic方法的基础上,通过引入KL散度构造惩罚项,将"新""旧"策略间的散度结合到损失函数中,以对Actor部分的策略更新进行优化;并进一步利用KL散度控制算法更新学习步长,以确保策略每次在由KL散度定义的合理范围内以最大学习步长进行更新.分别在经典的倒立摆仿真环境和公开的连续动作空间的机器人运动环境中对所提算法进行了测试.实验结果表明,KLPO算法能够更好地学习复杂的策略,收敛速度快,并且可获取更高的回报.

强化学习、KL散度、策略优化、连续动作空间

46

TP301(计算技术、计算机技术)

国家自然科学基金61375007;上海市科委基础研究项目15JC1400600

2019-07-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

212-217

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

46

2019,46(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn