基于趋势强度的SAT问题学习子句评估算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2018.12.021

基于趋势强度的SAT问题学习子句评估算法

引用
针对命题逻辑公式求解过程中难以有效评估学习子句是否有利于后续搜索的问题,提出了一种基于学习子句趋势强度的评估算法.该算法首先通过分析学习子句在生存期内参与冲突分析的时间分布特征,将随机、离散的时间分布转换为连续的累积趋势强度;然后在删除周期达到时,通过设定趋势强度阈值删除在后续搜索过程中"不大可能"被使用的子句,保留"可能"被使用的子句;最后采用2015年、2016年SA T问题国际竞赛实例,将该算法与经典的活跃度评估算法和文字块距离(LBD)评估算法进行对比.实验结果表明,趋势强度评估算法在效率上明显优于活跃度评估算法,且求解的实例更多,同时与LBD算法基本持平.

命题逻辑、趋势强度、学习子句、子句评估、周期性删除

45

TP301.6(计算技术、计算机技术)

国家自然科学基金项目61673320,11526171,61305074;中央高校基本科研业务费项目2682017ZT12

2019-01-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

137-141

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

45

2018,45(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn