基于码本聚类和因子分解机的多指标推荐算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2017.010.034

基于码本聚类和因子分解机的多指标推荐算法

引用
传统的协同过滤推荐算法普遍存在数据稀疏问题,且仅利用单一综合评分来计算用户相似度,无法找到在多个指标上偏好相似的用户,因而影响推荐的准确度.多指标评分推荐算法力图寻找在多个指标上偏好相似的用户,但是其评价成本高,导致数据稀疏性问题更加严重.为了找到与目标用户在多个指标上偏好相似的用户,提出基于码本聚类的思想来获取用户在各指标上的评分风格信息,然后基于评分风格信息将用户和项目在各指标上进行双向聚类,最后利用因子分解机模型(Factorization Machines,FMs)基于同一簇内的用户、项目、多指标评分信息、评分风格信息进行推荐.实验结果表明,与传统的协同过滤算法和其他多指标推荐方法相比,基于多指标评分信息的因子分解机推荐算法能够在一定程度上缓解数据稀疏问题,提高推荐的准确度.

用户偏好、多指标评分、码本聚类、因子分解机

44

TP393(计算技术、计算机技术)

国家自然科学基金项目61502350;湖北省自然科学基金项目2014CFB289

2017-11-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

182-186

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn