多核/众核平台上推荐算法的实现与性能评估
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2017.010.013

多核/众核平台上推荐算法的实现与性能评估

引用
用OpenCL语言标准设计并实现了推荐系统领域的两种经典算法:交替最小二乘法(Alternating Least Squares,ALS)与循环坐标下降法(Cyclic Coordinate Descent,CCD).将其应用到CPU,GPU,MIC多核与众核平台上,探索了在该平台上影响算法性能的因子:潜在特征维数与线程个数.同时,将OpenCL实现的两种算法与CUDA和OpenMP的实现进行比较,得出了一系列结论.在同等条件下,与ALS算法相比,CCD算法的精度更高,收敛速度更快且更稳定,但所耗时间更长.ALS和CCD算法基于OpenCL的实现性能不亚于CUDA(CCD上加速比为1.03x,ALS上加速比为1.2x)和OpenMP的实现(CCD与ALS上加速比大约为1.6~1.7x),并且两种算法在CPU平台上的性能均比GPU与MIC好.

推荐系统、OpenCL、ALS、CCD

44

TP311(计算技术、计算机技术)

国家自然科学基金项目61170049,61402488,61502514,61602501;国家863项目2015AA01A301

2017-11-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

71-74

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn