稀疏原子分解算法在AR模型参数估计中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2017.05.008

稀疏原子分解算法在AR模型参数估计中的应用

引用
针对自回归(Autoregressive,AR)模型阶数和系数的估计问题,提出一种基于稀疏表示的原子分解新算法.首先,根据AR模型自相关函数特征构造一个过完备稀疏字典;其次,针对含噪观测信号,通过引入松弛变量,建立关于AR模型特征根稀疏恢复的优化模型;最后,将定阶和参数估计问题转化为求解稀疏最优基问题,并提出一种改进的变尺度变换算法来求解该优化问题.实验结果表明,无论是对模拟信号,还是真实的脑电信号,该算法在定阶和系数估计两方面均优于传统估计方法,具有更好的预测精度和鲁棒性.

AR模型、稀疏表示、过完备稀疏基、参数估计

44

TP391(计算技术、计算机技术)

国家自然科学基金61501224

2017-06-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

42-47

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

44

2017,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn