基于改进LSH的协同过滤推荐算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2015.10.052

基于改进LSH的协同过滤推荐算法

引用
协同过滤是个性化推荐系统中应用较为成功与广泛的技术之一,影响协同过滤推荐质量的关键在于获取目标用户的k近邻用户,然后基于k近邻对其未评价的项目进行评分预测与推荐.针对用户评分数据的规模大、维度高、高度稀疏以及直接进行相似性度量的实时性差等对推荐性能的影响,提出一种基于LSH的协同过滤推荐算法,并对其进行改进.该算法基于p稳态分布的局部敏感哈希对用户评分数据进行降维与索引,并采用多探寻的机制对其进行改进,缓解多个哈希表对内存的压力,快速获取目标用户的近邻用户集合,然后采用加权方法来预测用户评分并产生推荐.标准数据集上的实验结果表明,该方法能有效克服评分数据的高维稀疏,并在保证一定推荐精度的前提下,大幅度提高推荐效率和降低内存消耗.

推荐系统、近似近邻、协同过滤、相似性度量、局部敏感哈希

42

TP391.3(计算技术、计算机技术)

2015-11-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

256-261

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

42

2015,42(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn