基于特征偏好的聚类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/j.issn.1002-137X.2015.5.012

基于特征偏好的聚类研究

引用
传统的聚类方法,如k均值和模糊c均值,通常并不区分数据特征对聚类的不同贡献或重要度,因此在面对高维数据聚类时,常会导致偏低的聚类性能,这归咎于聚类时未考虑高维数据特征间所存在的高度相关性或冗余.而通过在聚类时为每一特征引入权重并通过聚类目标的优化,不仅能自动获得对应的权重,而且也获得了聚类性能的提升.尽管如此,但无监督获取的特征权重未必吻合用户所期望的特征间的相对重要性(或偏好).因此尝试利用用户给定的实际偏好设计出能反映特征偏好的聚类方法,其将现有独立于个体聚类的全局加权型偏好聚类方法拓展至聚类依赖的局部特征加权型方法,由此弥补了前者的不足,提升了偏好聚类算法的性能.

聚类分析、特征偏好、特征权重、聚类依赖、二次规划

42

TP391.4(计算技术、计算机技术)

2015-06-04(万方平台首次上网日期,不代表论文的发表时间)

共5页

57-61

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

42

2015,42(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn