基于TLDA和SVSM的音乐信息检索模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2014.02.039

基于TLDA和SVSM的音乐信息检索模型

引用
随着协同标注功能的普及,用户可以通过标注自己感兴趣的音乐实现个性化的分类管理,因此音乐共享系统中的社会化标签已成为互联网的重要资源.为了提高音乐检索系统的效率,综合考虑了社会化标签的特性及其对音乐检索模型的影响,利用了TLDA方法来进行标签聚类以获取更多的语义相关的标签,综合考虑了用户检索行为、歌词、音乐标签和音乐流行度来提高音乐信息检索系统的性能.实验表明,基于TLDA和SVSM的音乐检索模型相比于基于属性数据的音乐检索模型以及k-means标签聚类的模型,尤其是在音乐标签稀疏和非正规的情况下,能够在一定程度上提高音乐检索的性能.

音乐信息检索、音乐向量空间模型、标签聚类、标签推荐、TLDA模型

41

TP319(计算技术、计算机技术)

国家自然科学基金60973068,61272370;国家社科基金08BTQ025;教育部博士点基金20110041110034;辽宁省自然科学基金201202031

2014-03-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

174-178

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

41

2014,41(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn