基于PCA与最大后验概率分类的人脸识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2014.02.019

基于PCA与最大后验概率分类的人脸识别方法

引用
在运用主成分分析进行人脸识别的过程中,由于实际图像可能符合某种概率密度分布,并且实际用到的图像可能受到不同程度的噪声污染,简单的距离分类已不再适用.基于核函数的最大后验概率分类是将概率密度函数估计中的参数估计、核函数以及贝叶斯理论结合起来,能很好地考虑到概率分布情况,用多元高斯分布下的基于核函数的最大后验概率分类取代距离分类,对于合有不同参数值的高斯噪声图像有较好的识别率.用ORL标准人脸库进行验证,实验结果表明了可行性.

主成分分析、多元高斯分布、参数估计、核函数、贝叶斯理论

41

TP391.41(计算技术、计算机技术)

2014-03-19(万方平台首次上网日期,不代表论文的发表时间)

共4页

91-94

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

41

2014,41(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn