基于分类的term重要性识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2013.11.050

基于分类的term重要性识别方法

引用
在传统的搜索引擎和信息检索中,用户Query中的term-weight通常是以一种上下文无关的方式得到的.现有的大多数信息检索技术都使用词袋方法,例如布尔模型、向量空间模型和概率模型等,这些方法均没有考虑Query中term之间的相关性.为了能够充分利用Query中的信息来提高term-weight的准确度,提出了一种有监督的机器学习方法来学习用户Query中的term-weight.该方法基于分类的方法,并引入了句法分析作为分类的一项重要的特征来训练模型.考虑用户Query中term之间的关系后,既避免了由Query到单个term的信息丢失,又增加了短文本的特征,同时使分类器实现软输出,能够给term的重要程度一个更为准确的量化值.

分类、依存句法分析、查询词权重、查询分析、term重要性、搜索引擎、信息检索

40

TP311.1(计算技术、计算机技术)

国家自然科学基金70971059;辽宁省创新团队项目2009T045

2013-12-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

242-247

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

40

2013,40(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn