一种基于LM的量子神经网络训练算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2013.09.048

一种基于LM的量子神经网络训练算法

引用
针对量子神经网络的训练结果易陷入局部极小值的问题,将Levenberg-Marquardt (LM)算法引入到原训练算法中,从而提高网络收敛速度与训练效果.并通过改进原训练算法的速代步骤,解决训练过程中网络权值与量子间隔不同的目标函数相互冲突引起的输出均方误差和波动的问题.实验结果表明,相比原训练算法,引入LM后的训练算法可以大幅减少迭代次数,显著降低网络收敛值,提高量子神经网络的分类效果.

量子神经网络、Levenberg-Marquardt算法、最速下降、量子间隔

40

TP183(自动化基础理论)

国家自然科学基金项目61072042

2013-11-11(万方平台首次上网日期,不代表论文的发表时间)

共4页

221-224

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

40

2013,40(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn