一种改进的K-means聚类算法的图像检索方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2013.08.061

一种改进的K-means聚类算法的图像检索方法

引用
分析了K-means聚类算法在图像检索中的缺点,提出了一种改进的K-means聚类算法的图像检索方法.它首先计算图像特征库里面的所有颜色直方图特征之间的欧氏距离;然后根据“两个对象距离越近,相似度越大”[1]这一原理,找到符合条件的特征向量作为K-means聚类的初始类心进行聚类;最后进行图像检索.实验结果表明,本算法具有较高的检索准确率.

聚类、K-means聚类算法、颜色直方图特征、图像检索、特征提取

40

TP39(计算技术、计算机技术)

福建省自然科学基金项目2011J01338

2013-10-10(万方平台首次上网日期,不代表论文的发表时间)

共4页

285-288

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

40

2013,40(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn