神经网络模型的透明化及输入变量约简
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2012.09.056

神经网络模型的透明化及输入变量约简

引用
由于神经网络很容易实现从输入空间到输出空间的非线性映射,因此,神经网络应用者往往未考虑输入变量和输出变量之间的相关性,直接用神经网络来实现输入变量与输出变量之间的黑箱建模,致使模型中常存在冗余变量,并造成模型可靠性和鲁棒性差.提出一种透明化神经网络黑箱特性的方法,并用它剔除模型中的冗余变量.该方法首先利用神经网络释义图可视化网络;再利用连接权法计算神经网络输入变量的相对贡献率,判断其对输出变量的重要性;最后利用改进的随机化测验对连接权和输入变量贡献率进行显著性检验,修剪模型,并以综合贡献度和相对贡献率均不显著的输入变量的交集为依据,剔除冗余变量,实现NN模型透明化及变量选择.实验结果表明,该方法增加了模型的透明度,选择出了最佳输入变量,剔除了冗余输入变量,提高了模型的可靠性和鲁棒性.因此,该研究为神经网络模型的透明化及变量约简提供了一种新的方法.

神经网络模型、透明化、网络释义图、变量选择

39

TP183(自动化基础理论)

国家自然科学基金61174015,51075418;重庆市自然科学基金CSTC2010BB2285

2012-11-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

247-251,278

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

39

2012,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn