递归贝叶斯估计框架下的非线性滤波算法综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2010.08.004

递归贝叶斯估计框架下的非线性滤波算法综述

引用
对递归贝叶斯估计框架下的非线性滤波(Nonlinear Filter,NF)算法进行分类,根据NF算法设计思想的不同把它们分为基于函数拟合/变换的NF算法、基于矩拟合的NF算法和基于条件后验概率密度函数拟合的NF算法.同时,还论述了线性回归卡尔曼滤波算法、二阶分离差分卡尔曼滤波算法、Unscented Kalman Filter算法和高斯-厄米特滤波算法四者间的共性与区别,指出了基于NF算法间相互融合的新NF算法设计的不足,分析了上述三类NF算法设计思想的完备性,发现了一些NF算法设计思想中的不足,明确了NF算法将来的突破方向.

递归贝叶斯估计、非线性滤波算法、算法分类、完备性

37

TP274(自动化技术及设备)

2010-11-02(万方平台首次上网日期,不代表论文的发表时间)

共5页

21-25

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

37

2010,37(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn