一种基于随机抽样的贝叶斯网络结构学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-137X.2009.02.047

一种基于随机抽样的贝叶斯网络结构学习算法

引用
针对贝叶斯网络的结构学习问题,基于并行随机抽样的思想提出了结构学习算法PCMHS,构建多条并行的收敛于Boltzmann分布的马尔可夫链.首先基于节点之间的互信息,进行所有马尔可夫链的初始化,在其迭代过程中,基于并行的MHS抽样总体得到产生下一代个体的建议分布,并通过对网络中弧和子结构的抽样产生下一代个体.算法FCMHS收敛于平稳分布,具有良好的学习精度,而该算法又通过使其初始分布和建议分布近似于其平稳分布,有效提高了马尔可夫链的收敛速度.在标准数据集上的实验结果验证了算法PCMHS的学习效率和学习精度明显优于经典算法MHS和PopMCMC.

贝叶斯网络、结构学习、随机抽样、马尔可夫链、建议分布

36

TP2;TP3

安徽省自然科学基金课题编号050420207

2009-04-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

199-202

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

36

2009,36(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn