基于迁移学习和知识蒸馏的加热炉温度预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13196/j.cims.2022.06.024

基于迁移学习和知识蒸馏的加热炉温度预测

引用
为了采用精确的控制策略对加热炉的燃烧情况进行优化控制,解决冶金企业中燃烧装置优化控制的核心问题,对加热炉内所有加热区的温度进行预测,并研究神经网络在炉温预测方面的适用性,提出基于迁移学习和知识蒸馏的炉温预测方法.建立基于时间卷积网络的源域温度预测模型,采用生成对抗损失进行域自适应来完成模型迁移,准确预测所有加热区的温度.进一步建立基于多任务学习的蒸馏网络,该网络通过教师辅助学生的方式解决深度迁移网络延时高的缺点.实验结果表明,所提迁移学习网络可以明显提升炉温预测的准确性,蒸馏网络可以明显减少网络参数,极大提高炉温预测的时效性.

加热炉、迁移学习、时间卷积网络、知识蒸馏

TP391;TF31(计算技术、计算机技术)

辽宁省兴辽英才计划资助项目XLYC1808009

2022-07-08(万方平台首次上网日期,不代表论文的发表时间)

共10页

1860-1869

相关文献
评论
暂无封面信息
查看本期封面目录

计算机集成制造系统

1006-5911

11-5946/TP

2022,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn