基于改进堆栈降噪自编码器的锅炉设备在线监测数据清洗方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13196/j.cims.2019.12.019

基于改进堆栈降噪自编码器的锅炉设备在线监测数据清洗方法

引用
数据清洗过程是对锅炉设备在线监测数据预处理的一个重要环节,针对数据清洗步骤繁琐,易导致连续性数据被破坏等问题,提出一种基于混合自适应性矩估计和随机梯度下降算法优化的堆栈降噪自编码器的数据清洗方法.首先,引入自适应性矩阵估计和随机梯度下降的混合算法,以不断调整堆栈降噪自编码器模型的网络参数.其次,利用模型训练正常状态数据,获取数据的隐藏特征,得到正常状态下的重构误差.再次,用该模型检测异常状态数据,根据其重构误差分析各种类型的数据对模型的影响,并对"脏数据"和反映设备故障的异常数据进行快速分类清洗修复.通过某电厂锅炉监测数据的清洗修补实验,证明了该方法能准确识别出"脏数据",修补后的数据亦能遵循数据整体的分布规律,满足了数据的清洗要求,为后续数据分析挖掘和设备故障诊断工作奠定了良好的基础.

锅炉设备、在线监测数据、数据清洗、深度学习、堆栈降噪自编码器、特征提取

25

TP391(计算技术、计算机技术)

吉林省科技发展计划资助项目20180101335JC

2020-03-28(万方平台首次上网日期,不代表论文的发表时间)

共10页

3181-3190

相关文献
评论
暂无封面信息
查看本期封面目录

计算机集成制造系统

1006-5911

11-5946/TP

25

2019,25(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn