扩展隐层的误差反传网络训练算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

扩展隐层的误差反传网络训练算法研究

引用
为提高神经网络的预测精度,对现有的误差反传网络训练算法进行了改进.对三层误差反传网络进行了结构扩展,在训练过的三层网络中,动态增加一个具有线性激活函数的辅助隐层,形成一种新的网络扩展模型.用改进的蚁群算法对新增权值参数进行训练,着重阐述算法的实现过程及算法分析.最后,设计了一组催化剂活性预测实验,对算法改进前后的预测能力及训练误差进行了对比.结果表明,采用该模型及训练算法,可以在不影响网络表达能力的基础上提高网络的训练精度及预测精度,改善了网络的泛化能力.

误差反传、神经网络、扩展隐层、训练算法、预测精度

14

TP183(自动化基础理论)

国家863计划资助项目2006AA062224

2009-02-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

2284-2288

相关文献
评论
暂无封面信息
查看本期封面目录

计算机集成制造系统

1006-5911

11-3619/TP

14

2008,14(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn