改进DeepLabv3+网络的钢板表面缺陷检测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2210-0249

改进DeepLabv3+网络的钢板表面缺陷检测研究

引用
针对钢板表面缺陷检测中存在的边缘分割粗糙、漏检和误检率高等问题,提出了一种引入注意力机制的多尺度特征融合的DeepLabv3+检测方法.在DeepLabv3+网络的解码区中,充分利用多尺度特征信息,对跃层特征融合进行优化,保留浅层特征并对深层特征进行了细化的上采样操作,获得更精细的缺陷边缘;在编码区主干网络ResNet101中引入坐标注意力机制,增强特征提取能力,提高分割准确率.设计了加权Dice损失和二元交叉熵损失(BCEloss)结合的优化损失函数来缓解样本不均衡的问题,提高分割精度.改进DeepLabv3+网络的Dice系数和mIoU值分别提高了6.0%和7.92%,刮痕缺陷边缘分割更准确,对凹坑、边缘裂纹与氧化铁皮缺陷的分割效果提升明显,实验结果验证了该方法处理钢板表面缺陷问题的有效性.

表面缺陷检测、DeepLabv3+网络、坐标注意力机制、图像语义分割、图像增强

59

TP391(计算技术、计算机技术)

国家自然科学基金51975058

2023-09-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

150-158

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn