一种改进复杂场景下小目标检测模型的方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2012-0521

一种改进复杂场景下小目标检测模型的方法

引用
复杂场景下小目标检测是目标检测领域的研究难点和热点.传统的two-stage和one-stage检测模型都是通过预先设定锚点框与真实目标框的交并比(intersection over union,IoU)阈值来划分正负样本集,同时这组预定义的固定锚点框还用于获取候选框,进而得到检测结果.然而,在复杂场景下,预先设定的IoU阈值会带来正负样本不均衡问题;针对小尺寸目标(船舶)检测,预定义的锚点框也很难保证覆盖目标的位置和密度,因此限制了检测模型的准确率.为了解决上述问题,提出自适应锚点框(adaptive anchor boxes,AAB)的方法优化目标检测网络,采用基于形状相似度距离的聚类算法生成锚点框,提高目标区域定位技术;采用利用聚类的锚点框计算自适应IoU阈值(adaptive threshold selection,ATS),划分正负样本,保证样本均衡.对复杂场景下的小目标(船舶目标)进行检测,实验结果表明,采用自适应锚点框方法和自适应阈值选择方法的目标检测模型在复杂场景中检测均能提升准确,对比faster R-CNN、FPN、Yolo3和pp-Yolo,融合了上述新方法的模型均提升了检测准确率,分别提升了9.6、2.6、9.8和9.9个百分点.

小目标检测、自适应阈值选择、自适应锚点框

58

TP391(计算技术、计算机技术)

辽宁省教育厅科学技术研究项目;辽宁省自然科学基金

2022-06-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

187-192

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn