基于深度强化学习的金融交易算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2109-0507

基于深度强化学习的金融交易算法研究

引用
交易策略在金融资产交易中具有十分重要的作用,如何在复杂动态金融市场中自动化选择交易策略是现代金融重要研究方向.强化学习算法通过与实际环境交互作用,寻找最优动态交易策略,最大化获取收益.提出了一个融合了CNN与LSTM的端到端深度强化学习自动化交易算法,CNN模块感知股票动态市场条件以及抽取动态特征,LSTM模块循环学习动态时间序列规律,最后通过强化学习方法累积最终收益并做出交易策略.在真实股票数据上的实验结果表明,该方法显著优于基准方法,可扩展性更强,鲁棒性更好.

交易策略、强化学习、深度学习、量化金融

58

TP181(自动化基础理论)

科技部重点研发计划项目2018YFB1402701

2022-04-18(万方平台首次上网日期,不代表论文的发表时间)

共10页

276-285

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn