基于多尺度特征迁移学习的步态识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2006-0154

基于多尺度特征迁移学习的步态识别研究

引用
为了解决行人步态数据集样本量较少、单特征或多特征融合的步态识别算法特征描述不足的问题,提出了一种基于多尺度特征深度迁移学习的行人步态识别方法.该算法步骤包括:改进VGG-16网络,去除网络中最后一个最大池化层(Maxpool Layer),融合空间金字塔池化网络结构(SPP)获取行人步态能量图(GEI)的多尺度信息,利用Imagenet数据集预训练此网络模型,将提取特征能力迁移至行人步态识别网络模型中,采用行人步态样本集微调网络,修改网络中的全连接层参数,应用于行人步态识别研究.该方法在中科院自动化研究所的CASIA-B步态数据集上的识别精度达到了95.7%,与单一步态特征的步态识别方法以及融合多种步态特征的识别方法相比,步态识别率有了明显提升,表明该方法有更好的识别性能.

步态识别;迁移学习;步态能量图;空间金字塔池化;多尺度特征

57

TP391(计算技术、计算机技术)

陕西省科技厅工业领域一般项目2018GY-173

2021-10-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

180-187

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn