改进CBAM的轻量级注意力模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2101-0369

改进CBAM的轻量级注意力模型

引用
近几年注意力模型在计算机视觉领域取得了广泛的应用,通过在卷积神经网络中加入注意力模型,网络的性能可以显著提升.然而大多数现有的方法都专注于开发更复杂的注意力模型,以使卷积神经网络获得更强的特征表达能力,但这也不可避免地增加了模型的复杂性.为了在性能和复杂度间取得平衡,对CBAM模型进行优化提出了轻量级的EAM(Efficient Attention Module)模型.针对CBAM的通道注意力模块,引入一维卷积替代全连接层来聚合各通道间的信息;对于CBAM的空间注意力模块,将大卷积核替换为空洞卷积来增加感受野以聚合更广的空间上下文信息.将该模型融入YOLOv4后在VOC2012数据集上进行测试,mAP提高3.48个百分点.实验结果表明,该注意力模型只引入较小的参数量,网络性能可获得较大提升.

卷积神经网络;注意力机制;目标检测

57

TP391.4(计算技术、计算机技术)

2021-10-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

150-156

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn