基于SVM和CRF双层模型的FrameNet框架消歧
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2005-0412

基于SVM和CRF双层模型的FrameNet框架消歧

引用
框架消歧指的是在给定的句子中根据目标词的上下文语境,自动识别出有歧义的目标词所属的框架.针对传统FrameNet框架消歧方法使用单一分类模型时没有考虑到目标词之间的联系而导致隐性特征难以被提取,以及分类结果比较依赖分类模型的性能及参数的设置的问题,提出了一种基于SVM和CRF双层模型的FrameNet框架消歧方法.该方法利用分治思想将框架消歧问题转化为对目标词的分类及序列标注.第一层SVM模型对输入的语料进行粗分类,得到分类标签序列;第二层CRF模型将文本序列和SVM模型的分类标签序列作为输入,将分类标签加入特征模板进一步进行序列标注.实验选取了FrameNet语义知识库中能够激起多个框架的18个词元,2614条例句作为实验数据.实验结果显示,与传统方法相比,基于SVM和CRF的双层模型有较高的准确率,证明了该方法是一种较为适用的FrameNet框架消歧方法.

FrameNet;框架消歧;支持向量机;条件随机场;双层模型

57

TP391.1(计算技术、计算机技术)

山西省面上自然科学基金;山西省软科学研究计划项目

2021-09-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

255-262

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn