基于熵的过采样框架
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2005-0317

基于熵的过采样框架

引用
数据挖掘与机器学习技术日益趋向成熟并且被广泛应用于实际问题的处理中,但该领域仍面临着诸多挑战,如不平衡数据集分类问题.利用过采样技术处理这类问题时,通常只考虑数量的不平衡,而不考虑数据分布是否平衡.利用信息熵度量数据集的局部密度信息,从分布上考虑数据集的不平衡程度,并提出了基于熵的危险集的概念和它的三种使用策略,即基于熵的危险集过采样算法、基于熵的安全集过采样算法和基于熵的自适应过采样算法.竞争性的实验结果表明,这些算法可以有效提升经典过采样算法的性能,为进一步利用信息熵理论研究不平衡数据集提供了成功的实践经验.

数据挖掘、不平衡数据、数据分类、数据分布、信息熵

57

TP391(计算技术、计算机技术)

国家自然科学基金61672025

2021-07-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

96-101

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(13)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn