基于条件能量对抗网络的肝脏和肝肿瘤分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2003-0370

基于条件能量对抗网络的肝脏和肝肿瘤分割

引用
从图像中分割出肝脏和肝肿瘤是肝部疾病诊断重要手段之一,现有基于卷积神经网络(Convolutional Neu-ral Network,CNN)方法通过为输入图像中每个像素分配类别标签来实现肝脏和肝肿瘤分割.CNN在对每个像素分类过程中没有使用邻域内其他像素类别信息,容易出现小目标漏检和目标边界分割模糊问题.针对这些问题,提出了条件能量对抗网络用于肝脏和肝肿瘤分割.该方法基于能量生成对抗网络(Energy-Based Generative Adver-sarial Network,EBGAN)和条件生成对抗网络(Conditional Generative Adversarial Network,CGAN),使用一个基于CNN的分割网络作为生成器与一个自编码器作为判别器,通过将判别器作为一种损失函数来度量并提升分割结果与真实标注之间的相似度.在对抗训练过程中,判别器将生成器输出的分割结果作为输入并将原始图像作为条件约束,通过学习像素类别之间的高阶一致性提高分割精度,使用能量函数作为判别器避免了对抗网络训练中容易出现的梯度消失或梯度爆炸,更易于训练.在MICCAI 2017肝肿瘤分割(LiTS)挑战赛的数据集和3DIRCADb数据集上对提出的方法进行验证,实验结果表明,该方法不仅实现了肝脏与肝肿瘤的自动分割,还利用像素类别之间的高阶一致性提升了肿瘤和肝脏边界的分割精度,减少了小体积肿瘤的漏检.

肝脏分割、肝肿瘤分割、Unet、能量生成对抗网络(EBGAN)

57

TP751(遥感技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金

2021-06-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

179-184

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn