GCN-PU:基于图卷积网络的PU文本分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2003-0195

GCN-PU:基于图卷积网络的PU文本分类算法

引用
针对PU(Positive and Unlabeled)文本分类问题,提出了一种基于图卷积网络的PU文本分类算法(GCN-PU),基本思想是给未标注样本加以不同的损失权重.将未标注样本全部视为负类样本,用以训练基于卷积神经网络的文本分类器;取卷积神经网络的倒数第二层的向量为文本的特征向量,以及对应的类别概率,作为图卷积网络的输入;利用图卷积网络得出的类别概率计算每个未标注样本的损失权重,重新训练文本分类器.不断重复上述三个步骤,直到算法参数稳定.在公开数据集20newsgroup上的实验结果表明,GCN-PU算法优于现有的方法,尤其在正类样本较少的情况下.

卷积神经网络、图卷积网络、损失权重、PU文本分类

57

TP391(计算技术、计算机技术)

2021-06-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

162-167

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn