基于LSTM-CNN-CBAM模型的股票预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1912-0448

基于LSTM-CNN-CBAM模型的股票预测研究

引用
为了更好地对股票价格进行预测,进而为股民提供合理化的建议,提出了一种在结合长短期记忆网络(LSTM)和卷积神经网络(CNN)的基础上引入注意力机制的股票预测混合模型(LSTM-CNN-CBAM),该模型采用的是端到端的网络结构,使用LSTM来提取数据中的时序特征,利用CNN挖掘数据中的深层特征,通过在网络结构中加入注意力机制——Convolutional Attention Block Module(CBAM)卷积模块,可以有效地提升网络的特征提取能力.基于上证指数进行对比实验,通过对比实验预测结果和评价指标,验证了在LSTM与CNN结合的网络模型中加入CBAM模块的预测有效性和可行性.

长短期记忆网络(LSTM)、卷积神经网络(CNN)、注意力机制、股价预测

57

TP29(自动化技术及设备)

2021-02-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

203-207

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn