基于改进Yolov3算法的遥感建筑物检测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2004-0410

基于改进Yolov3算法的遥感建筑物检测研究

引用
针对遥感图像中建筑物检测存在小型建筑物检测难度大、检测过程中无法满足实时性等问题,提出将基于深度学习的目标检测算法Yolo v3应用到建筑物检测场景中.以实时性及泛用性良好的Yolo v3为基本算法,满足实时性的要求;通过改进Yolo v3的网络结构,以修改特征图分辨率、调整先验框维度为方向加强对小型建筑物的检测能力.实验结果表明,改进的Yolo v3目标检测算法既满足了实时性的要求,且检测精度和召回率达到了91.29%和95.61%,较原算法分别提高了5.35%和2.34%.因此提出的改进方法有效解决了遥感领域小型建筑物的检测问题.

目标检测、遥感、深度学习、Yolov3、图像处理

56

TP391(计算技术、计算机技术)

国家重点研发计划;国家部委基金;山西省重点研发计划;山西省自然科学基金

2020-09-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

209-213

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn