差分准对立学习多目标蚁狮算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1903-0320

差分准对立学习多目标蚁狮算法

引用
为解决多目标优化问题,对经典的蚁狮算法进行改进,提出了基于差分进化的准对立学习多目标蚁狮算法(DEQOMALO).该算法针对蚁狮算法易陷入局部最优的不足,一方面,该算法引用差分进化的思想,充分利用种群和精英蚁狮的信息对原算法中蚂蚁个体的位置更新方式进行改进;另一方面采用反向学习策略对蚂蚁种群进行优化,将原种群个体和其准对立个体进行混合并择优作为新的种群,大大增加种群的多样性.选取典型的标准测试函数,将提出的算法与原始蚁狮算法以及其他传统进化策略优化的蚁狮算法进行比较.实验结果表明,改进算法在收敛性和分布性上均有很大程度的提升,在解决双目标优化问题上具有较好的鲁棒性和有效性.

多目标优化、蚁狮算法、差分进化、准对立策略

56

O24(计算数学)

"十三五"陆军装备预先研究项目

2020-07-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

156-163

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(13)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn