应用于CT图像肺结节检测的深度学习方法综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2002-0051

应用于CT图像肺结节检测的深度学习方法综述

引用
肺癌是世界上死亡率最高的癌症,通过胸部CT影像检测肺结节对肺癌早期诊断和治疗意义重大.为了减轻放射科医生的工作量以及同时减少误诊率和漏诊率,研究人员提出了计算机辅助检测(CAD)系统辅助放射科医生检测和诊断肺结节.目前,研究人员正在尝试不同的深度学习技术,以提高计算机辅助诊断系统在基于CT图像的肺癌筛查中的性能.这项工作回顾了作为肺癌检测的CAD系统目前典型的深度学习的算法和框架,主要从数据集介绍、2D深度学习方法、3D深度学习方法、数据不平衡问题的处理、模型训练方法以及模型可解释性这六个方面进行介绍.最后,对各个方法的主要特点和算法性能进行了综合比较分析,并对如何提高结节检测性能进行了展望.

深度学习、CT图像、候选结节检测、卷积神经网络

56

TP391(计算技术、计算机技术)

国家自然科学基金;北方民族大学研究生创新项目;国家民委创新团队"图像与智能信息处理"科研平台项目;北方民族大学"计算机视觉与虚拟现实"创新团队项目

2020-07-10(万方平台首次上网日期,不代表论文的发表时间)

共13页

20-32

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(13)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn