大权值抑制策略用于训练卷积神经网络
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1809-0175

大权值抑制策略用于训练卷积神经网络

引用
卷积神经网络(Convolutional Neural Network,CNN)是深度学习研究的重要方向,因其模型复杂且训练困难,所以设计更好的CNN训练方法一直是研究热点.针对训练好的CNN模型,分析了其参数权值对训练结果的影响,确认权值越大的连接参数对模型性能的影响也越大,且整个模型的性能主要由极少数的大权值参数决定.据此,提出了CNN的权值抑制训练方法(Weight Restrain of CNN,WR-CNN),该方法调整了模型训练时的权值更新策略,设置一个与权值大小相关的抑制系数,用该系数调整反向传播时的权值增量幅度,达到控制大权值连接参数分布的目的.在不同实验条件下,该方法将CNN模型的错误率降低1.8%~5.0%,模型对大权值参数的敏感性明显降低,模型泛化能力和鲁棒性均得到改善,另外,该方法也可用于对已训练好的网络模型进行再优化.

卷积神经网络、权值参数、抑制系数、泛化能力、鲁棒性

56

TP18(自动化基础理论)

2020-03-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

115-119

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn