10.3778/j.issn.1002-8331.1809-0175
大权值抑制策略用于训练卷积神经网络
卷积神经网络(Convolutional Neural Network,CNN)是深度学习研究的重要方向,因其模型复杂且训练困难,所以设计更好的CNN训练方法一直是研究热点.针对训练好的CNN模型,分析了其参数权值对训练结果的影响,确认权值越大的连接参数对模型性能的影响也越大,且整个模型的性能主要由极少数的大权值参数决定.据此,提出了CNN的权值抑制训练方法(Weight Restrain of CNN,WR-CNN),该方法调整了模型训练时的权值更新策略,设置一个与权值大小相关的抑制系数,用该系数调整反向传播时的权值增量幅度,达到控制大权值连接参数分布的目的.在不同实验条件下,该方法将CNN模型的错误率降低1.8%~5.0%,模型对大权值参数的敏感性明显降低,模型泛化能力和鲁棒性均得到改善,另外,该方法也可用于对已训练好的网络模型进行再优化.
卷积神经网络、权值参数、抑制系数、泛化能力、鲁棒性
56
TP18(自动化基础理论)
2020-03-19(万方平台首次上网日期,不代表论文的发表时间)
共5页
115-119