FastICA算法的收敛性与一致性分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1812-0361

FastICA算法的收敛性与一致性分析

引用
快速独立成分分析(Fast Independent Component Analysis,FastICA)是解决盲源分离问题使用最广泛的方法.在实际中,只能得到有限数据样本,所以采用的均是基于样本的FastICA算法.而常见的FastICA算法的收敛性分析均属于全集FastICA算法的收敛性分析,所以研究基于样本FastICA算法的收敛性和算法的一致性有至关重要的意义.以一种更简洁的方法证明了全集FastICA的相关收敛性质,包括对比函数的局部极大值和FastICA迭代函数不动点之间的关系.引入狄拉克函数,构造观测信号的概率密度函数,通过大数定律,给出了基于样本的FastICA算法收敛性条件.依据M-估计一致性定理,证明了FastICA给出的估计是一致估计.仿真实验的结果验证了FastICA估计的一致性.

快速独立成分分析(FastICA)、收敛性、不动点、依概率一致收敛、一致性

56

TP391(计算技术、计算机技术)

国家自然科学基金;中央高校基本科研基金

2020-03-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

35-41

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn