新型LeNet-FC卷积神经网络模型算法的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1803-0419

新型LeNet-FC卷积神经网络模型算法的研究

引用
针对已有的卷积神经网络(Convolutional Neural Network,CNN)在人脸识别训练中出现过拟合、收敛速度慢以及识别准确率不高的问题,提出了新型的LeNet-FC卷积神经网络模型.通过增加网络层、缩小卷积核等结构改进以及采用优化的对数—修正线性单元(Logarithmic Rectified Linear Unit,L_ReLU)激活函数,该模型在人脸识别训练的准确率达到了99.85%.同时基于LeNet-FC卷积神经网络模型设计了一个人脸识别系统.该系统在ORL人脸库的仿真测试实验中识别准确率达到了96%.

人工智能、人脸识别、卷积神经网络、结构改进、激活函数优化

55

TP183(自动化基础理论)

湖南省教育厅科研项目16C0040

2019-04-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

105-111

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

55

2019,55(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn