粒子滤波目标跟踪算法综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1809-0242

粒子滤波目标跟踪算法综述

引用
随着人工智能科学的发展,目标跟踪成为中外学者研究的热点,近年来很多目标跟踪算法相继被提出,其中,经典的卡尔曼滤波算法常被用于目标跟踪领域.然而,在实际情况中,目标跟踪过程常涉及到非线性非高斯问题,由于粒子滤波算法在非线性非高斯系统中有较好的性能,因此将其引入目标跟踪研究领域.针对粒子滤波算法存在的跟踪精度差、实时性不高等问题,近年来国内外学者提出很多改进方法.从特征融合、算法融合和自适应粒子滤波三个方面介绍了相关改进方法的基本思想,展望了粒子滤波算法在目标跟踪领域的发展方向.

目标跟踪、粒子滤波、重采样、重要性采样、特征融合、自适应粒子滤波

55

TP391.4(计算技术、计算机技术)

国家自然科学基金61573057;中央高校基本科研业务费项目2010JBZ010

2019-04-22(万方平台首次上网日期,不代表论文的发表时间)

共11页

8-17,59

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

55

2019,55(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn