基于学习的图像超分辨重建方法综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1805-0038

基于学习的图像超分辨重建方法综述

引用
全面综述了基于学习的单帧图像超分辨重建技术的研究与发展.基于学习的单帧图像超分辨重建借助机器学习技术,通过学习低分辨与高分辨图像之间的映射关系估计低分辨图像中丢失的高频细节,以获得边缘清晰、纹理细节丰富的高质量图像.根据超分辨重建过程中实例样本使用方式和学习算法的不同,已有基于学习的超分辨重建方法可分为五种类型,包括基于k近邻学习的方法、基于流形学习的方法、基于字典学习的方法、基于实例多线性回归的方法和基于深度学习的方法.对每类方法的主要思想和具有代表性的方法进行了详细介绍,对六种具有代表性的基于学习的超分辨重建方法的重建结果进行了比较和分析.最后,对基于学习的超分辨重建技术的未来发展趋势进行了展望.

实例学习、流形学习、实例回归、字典学习、单帧图像超分辨、图像质量评价

54

TP391(计算技术、计算机技术)

国家自然科学基金61471161;陕西省科技厅自然科学基础研究重点项目2016JZ026,2018JQ1017;西安 工程大学博士科研启动基金BS1616

2018-08-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

13-21

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

54

2018,54(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn