基于群结构稀疏表示的图像修复
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.1512-0260

基于群结构稀疏表示的图像修复

引用
针对基于稀疏表示的图像修复方法存在稀疏系数先验知识表达不足等问题,考虑图像的纹理自相似性和原子系数的群结构稀疏性,提出了群结构约束的稀疏表示模型,通过选取合适的群结构约束稀疏系数,使字典中相邻基对应的稀疏系数之间建立联系,并统一对输入图像的有效数据图块与训练样本进行稀疏编码来进一步训练字典,使其具有相同的稀疏模式,从而建立联合稀疏关联,并将其作为先验知识指导图像修复。通过区域目标剔除、像素缺失修复等实验验证其性能,实验结果表明,该方法有较强的自适应性,修复效果较好。

信息处理技术、稀疏表示、联合字典学习、群结构

52

TP301.6(计算技术、计算机技术)

安徽省自然科学基金No.1508085QF114。

2016-10-14(万方平台首次上网日期,不代表论文的发表时间)

共5页

14-17,30

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

52

2016,52(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn