采用PSO和SVM预测大锻坯内部空洞锻合压下率
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2011.27.066

采用PSO和SVM预测大锻坯内部空洞锻合压下率

引用
预测大型锻件内部空洞锻合时的压下率,目前都是局限于有限元数值模拟和一些复杂的数学公式.提出一种新的预测方法,用SVM回归模型预测空洞闭合的临界压下率.选取几个影响空洞闭合的主要因素作为支持向量机的输入特征,用PSO优化SVM的核参数以提高其精度,结合LIB-SVM工具箱,训练出一个SVM模型.该模型可以快速预测锻坯内部空洞锻合临界压下率,将其预测结果与计算机模拟结果相比较,相关系数几乎达到了85%,具有较好的预测性能.

空洞锻合:粒子群优化、支持向量机、临界压下率

47

TH16

贵州省工业攻关项目GY[2009]3040

2012-01-14(万方平台首次上网日期,不代表论文的发表时间)

共3页

243-245

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

47

2011,47(27)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn