RQEA-SVR在交通流预测中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1002-8331.2010.09.069

RQEA-SVR在交通流预测中的应用

引用
建立在统计学习理论和结构风险最小化准则基础上的支持向量回归(SVR)是处理小样本数据回归问题的有利工具,SVR的参数选取直接影响其学习性能和泛化能力.文中将SVR参数选取看作是参数的组合优化问题,确定组合优化问题的目标函数,采用实数量子进化算法(RQEA)求解组合优化问题进而优选SVR参数,形成RQEA-SVR,并应用RQEA-SVR求解交通流预测问题.仿真试验表明RQEA是优选SVR参数的有效方法,解决交通流预测问题具有优良的性能.

支持向量机、参数优选、实数量子进化算法、交通流预测

46

TP18(自动化基础理论)

黑龙江省自然科学基金the Natural Science Foundation of Heilongjiang Province of China under Grant F2007-9;哈尔滨市青年科技创新人才专项基金RC2008QN009005

2010-05-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

241-245

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

46

2010,46(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn