注意力引导多模态融合的R GB-D图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2022.12.020

注意力引导多模态融合的R GB-D图像分割

引用
为提高图像分割效率,提出注意力引导多模态交叉融合分割网络(ACFNet).采用编码器-解码器结构,设计非对称双流特征提取网络,RGB和深度编码器分别以ResNet-101和ResNet-50为主干网络,并在RGB编码器中添加全局-局部特征提取模块(GL).为有效融合RGB和深度特征,提出注意力引导多模态交叉融合模块(ACFM),在多阶段利用融合的增强特征表示.实验结果表明,ACFNet在室内场景分割数据集NYUD V2上的平均交并比(mIou)达到了51.5%,与先进的语义分割算法相比,显著提高了分割性能.

RGB-D图像、语义分割、注意力机制、多模态融合、深度学习、特征提取、编码器-解码器

43

TP391(计算技术、计算机技术)

山西省回国留学人员科研基金项目2020-113

2023-01-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

3453-3460

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

43

2022,43(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn