基于2S-LSGCN的人体动作识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2022.02.029

基于2S-LSGCN的人体动作识别

引用
针对视频中人体动作行为的空间复杂性和时间复杂性问题,提出一种融合图卷积神经网络和长短期记忆神经网络的双流网络方法2 S-LSGCN.从人体关节点组成的骨架关节图中,提取动作的空间与时间特征;利用GCN提取骨架关节点间潜在的空间信息,LSTM提取人体动作前后之间的时间序列特征作为补充,分别将两个网络的预测输出进行晚融合,提高单个网络泛化能力不足的问题.该模型在NTU-RGBD数据集上达到了令人满意的效果,在与该领域中的同类算法比较中表现优异.

人体动作识别;骨架关节图;晚融合;图卷积神经网络;长短期记忆网络

43

TP391.41(计算技术、计算机技术)

国家自然科学基金61873068

2022-03-03(万方平台首次上网日期,不代表论文的发表时间)

共7页

510-516

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

43

2022,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn