基于迁移学习的微博谣言检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2021.12.031

基于迁移学习的微博谣言检测方法

引用
为解决基于深度神经网络的微博谣言检测工作中带标签数据稀缺的问题,提出一种基于迁移学习的微博谣言检测方法.利用双层双向的门控循环单元和卷积神经网络组成的联合模型作为特征提取器,利用丰富的评论数据对联合神经网络进行预训练,将训练好的特征提取层迁移到微博谣言检测任务中,通过区分微调和斜三角学习率两种微调策略对特征提取层进行调整,使其适应于目标任务.实验结果表明,采用迁移学习方法的联合神经网络能有效提高微博谣言检测的准确率.

谣言检测;迁移学习;微博;深度神经网络;预训练

42

TP389.1(计算技术、计算机技术)

2020年新疆维吾尔自治区研究生教育改革创新计划基金项目;新疆师范大学重点实验室基金项目;国家自然科学基金委NSFC-新疆联合基金重点支持基金项目

2021-12-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

3534-3539

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

42

2021,42(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn