基于时序卷积网络的词级语言模型研究与应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2021.02.022

基于时序卷积网络的词级语言模型研究与应用

引用
提出一种卷积神经网络——时序卷积神经网络.将该网络应用于语言模型,时序卷积神经网络的基本结构由输入层、扩大卷积层、因果卷积层、Relu层、Dropout层、输出层组成,将扩大卷积应用在语言模型中.实验结果表明,将语言模型的复杂度降到83.21,误差降到3.87,该网络同RNN比较复杂度下降14%、误差下降0.69,该网络同LSTM比较复杂度下降13%、误差下降0.4,综合复杂度、误差两个指标,时序卷积网络优于其它基准模型.

语言模型、扩大卷积、时序卷积神经网络、因果卷积、复杂度

42

TP39(计算技术、计算机技术)

辽宁省教育厅科学技术研究基金项目 ;辽宁省教育厅科学研究基金项目 ;辽宁省博士启动基金项目

2021-03-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

449-454

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn