基于参数逼近的多智能体强化学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16208/j.issn1000-7024.2020.03.042

基于参数逼近的多智能体强化学习算法

引用
为改善多智能体纳什Q学习算法适应性差、条件苛刻、运算复杂,且没有通用方法更新策略价值等问题,提出基于参数的算法改进思路.引入联合动作向量简化算法,引入参数,通过参数近似控制状态-行为值函数,转化训练目标,给出参数逼近的值函数更新方程,理论分析算法的收敛性及可行性.仿真结果表明,基于参数逼近的多智能体强化学习算法,能够使智能体100%达到纳什均衡,提高算法性能,简化算法复杂性,相比传统纳什Q学习算法能够较快收敛.

智能体系统、强化学习、马尔科夫博弈、Q学习、纳什均衡

41

TP181(自动化基础理论)

国家自然科学基金项目;陕西省自然科学基金项目

2020-05-07(万方平台首次上网日期,不代表论文的发表时间)

共5页

862-866

相关文献
评论
暂无封面信息
查看本期封面目录

计算机工程与设计

1000-7024

11-1775/TP

41

2020,41(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn